The realization space is [1 x1 - 1 1 x1 - 1 1 0 0 x1^3 - 3*x1^2 + 3*x1 - 1 x1^4 - 4*x1^3 + 6*x1^2 - 4*x1 + 1 x1^3 - 3*x1^2 + 3*x1 - 1 0] [1 x1 0 0 x1 1 0 x1^3 - 3*x1^2 + 3*x1 - 1 x1^4 - 3*x1^3 + 3*x1^2 - x1 x1^4 - 3*x1^3 + 3*x1^2 - x1 x1^3 - 3*x1^2 + 3*x1 - 1] [1 x1 0 x1 0 0 1 x1 -x1^3 + 3*x1^2 - x1 x1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^15 - 8*x1^14 + 28*x1^13 - 57*x1^12 + 75*x1^11 - 66*x1^10 + 38*x1^9 - 13*x1^8 + 2*x1^7) avoiding the zero loci of the polynomials RingElem[x1^3 - 2*x1^2 + x1 - 1, x1, x1 - 2, x1 - 1, x1^3 - 3*x1^2 + 2*x1 - 1, x1^2 - x1 + 1, x1^4 - 3*x1^3 + 3*x1^2 - 3*x1 + 1, x1^2 - 3*x1 + 1, x1^4 - 4*x1^3 + 5*x1^2 - 2*x1 + 1]